志尚儀器股份有限公司

Fiber Optic Bundles 光纖束探頭 Fiber Optic Bundles 光纖束探頭

Fiber Optic Bundles 光纖束探頭

Fiber Optic Bundles 光纖束探頭

Fiber Optic Bundles

廠牌:B&W Tek 必達泰克
供應商:敦亞有限公司
聯絡電話:02-8646-4129
定價:與我們聯絡

快速詢價

7112

行動條碼QR Code
Fiber Optic Bundles 光纖束探頭-行動條碼QR Code

Fiber Optic Bundles  光纖束探頭

Overview

 

For many spectroscopic applications, proper sampling requires more than just a simple fiber optic patch cord. In cases that require you to measure various samples simultaneously or those that require improved signal to noise ratio (as in the case of weak signals), the use of fiber optic bundles are required. In this section, we will discuss the advantages and disadvantages of some common fiber optic bundle configurations.

 

Fiber Optic Bundles

 

A fiber optic bundle is defined as any fiber optic assembly that contains more than one fiber optic in a single cable. The most common example of a fiber optic bundle is known as a bifurcated fiber assembly. The goal of using a bifurcated fiber assembly is either to split a signal or to combine signals. Figure 7-1 shows an example of a typical bifurcated fiber assembly.

 

Some of the most common applications for bifurcated fi assemblies are those that require you to direct light from a sample into two different spectrometers. This is generally used to extend the spectral coverage of the measurement, either to maintain higher resolution or to cover an extended range.
For example, if someone is looking to make a broadband measurement from 350 – 1700nm, they need to use both an InGaAs and a Si detector array. By using a bifurcated fi assembly with one UV fi and one NIR fiber to direct light into each spectrometer, they can make a simultaneous measurement. Figure 7-2 shows an example spectrum of this type of measurement.

Figure 7-2 Spectrum of a Tungsten Halogen Lamp from 350 – 1700nm

 

A bifurcated fiber can also be used to couple the signal from multiple samples into the same spectrometer. When

using a bifurcated fiber in this fashion, only one sample can emit light at a time, or special care should be taken to make sure the signals do not have spectral overlap.

The same basic principal and applications can be scaled up to trifurcated and quadfurcated fiber assemblies as well. An example of a trifurcated fiber assembly is shown in Figure 7-3 below.

Figure 7-3 Trifurcated Fiber Assembly

 
Another common bundled fiber optic assembly is called a“round to slit”configuration. This configuration consists of multiple small core fibers (typically 100µm) that are put into one fiber assembly with fibers bundled tightly in a circular fashion on one end, and stacked linearly on top of each other on the other end. The end with fibers stacked linearly on top of one another form a pattern to match the entrance slit of the spectrometer, as shown in Figure 7-4 below.

Figure 7-4 “Round to Slit” Fiber Optic Bundle

 
This configuration allows for much higher throughput into the spectrometer, as opposed to simply using a larger core fiber. As shown in Figure 7-5 below, when a large core fiber is placed in front of the entrance slit of a spectrometer, the majority of the light is vignetted and doesn’t make it into the spectrometer. By contrast, when the smaller fibers are stacked along the entrance slit, significantly more light enters into the spectrometer, allowing for much higher sensitivity and signal to noise. As a result, the slit can remain relatively narrow and maintain resolution without sacrificing throughput.



Figure 7-5 Comparison of Stacked Fiber to Single Large Core Fiber

 

Figure 7-6 Example Transmittance Setup Utilizing a “Round to Slit” Fiber Bundle

 

When using a fiber optic assembly with a slit configuration, it is important to remember two important details. First, in order to get any benefit from the fiber stacking, a cylindrical lens must be used to prevent the vast majority of the light to be imaged above and below the detector. Second, it is important to properly align the fiber stack to the entrance slit, which can be done by shining light into the round end of the assembly and monitoring the signal as the fiber is rotated in the SMA905 connection port. When peak signal is achieved, the fiber can then be screwed down to lock the position. One very common application using this kind of fiber optic assembly is NIR transmission spectroscopy, where there are very few photons and photon energy is extremely low. An example of a transmittance setup is shown in Figure 7-6.

 
By combining various combinations of single, round, and stacked confi ations with regular, bifurcated, trifurcated, and quadfurcated fiber assemblies, there are countless options available to suit any application. In the next section, we will discuss how to combine fiber bundles with other various opto-mechanical components to create more specific applications.
 

您也可能對以下商品有興趣...

產品關鍵字:

志尚儀器股份有限公司

最新廠商動態!

OMEGA ENGINEERING ;OMEGA代理;熱電偶接頭;熱電偶線;感溫線;偉吉達;
WHATMAN代理空氣採樣濾紙;玻璃纖維濾紙;G/A GF/B GF/C暨相關過濾素材; 2020 Cytiva代理Whatman濾膜及耗材;
不銹鋼三層推車;不銹鋼二層推車;實驗室推車;歡迎同業洽詢;
BROOKS質量流量控制器;PC540;BROOKS代理;質量流量控制器;BROOKS 5850E;
OMEGA ENGINEERING ;OMEGA 代理商;熱電偶接頭;熱電偶導線;熱電偶公母接頭;熱電偶感溫線;

更多

最新儀器!

山瑞科學有限公司

Copyright © 2006-2017 tw17 All rights reserved.
Design: 台灣儀器網

台灣儀器網Tw17 行動條碼QR Code